
Hannay angle for a classical spinning particle in a rotating magnetic field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 L7

(http://iopscience.iop.org/0305-4470/23/1/002)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 08:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 23 (1990) L7-L10. Printed in the UK 

LETTER TO THE EDITOR 

Hannay angle for a classical spinning particle in a rotating 
magnetic field 
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t Department of Physics and Astrophysics, University of Delhi, Delhi-I10 007, India 
$ Department of  Physics, Loyola College, Madras-600 034, India 

Received 2 August 1989, in final form 17 October 1989 

Abstract. For the spin-1 system in a slowly varying magnetic field, we investigate its 
classical analogue to calculate the Hannay angle and explicitly check that this is related 
to Berry’s phase according to the well known semiclassical formula. 

Phases in quantum mechanics have a long and distinguished history. One such phase 
factor which has drawn great attention recently is Berry’s phase (Berry 1984). 

For the quantal Hamiltonian which depends on slowly varying external parameters, 
Berry showed that, in the adiabatic approximation, the solution of the time-dependent 
Schrodinger equation initially chosen to be a non-degenerate eigenstate of the instan- 
taneous Hamiltonian acquires, in addition to the usual ‘dynamical phase factor’, a 
geometrical phase yn(  C) as the parameters are slowly varied along a closed circuit C 
in the parameter space in time T. Here n reflects the dependence of the phase on the 
quantum numbers of the eigenstate. This perceptive observation of Berry also has a 
classical analogue, called the Hannay angle (Berry 1985, Hannay 1985). As one goes 
round a closed curve C in the parameter space of a classical Hamiltonian this induces, 
in the adiatic approximation, a shift A 6 (  C, I) in the angle variable 6 conjugate to the 
action variable I. Berry and Hannay have further shown that this classical shift is the 
action derivative of the semiclassical Berry phase, i.e. 

A6(C, Z)=-hay , (C) /a l=-ay , (C) /an .  (1) 

This semiclassical formula has been verified in a number of examples considered by 
Berry (1985) himself and others. 

The prototype Hamiltonian much investigated in the literature for Berry’s phase 
calculation is (Berry 1984, Kuratsuji and Iida 1985): 

H = - J .  B. (2) 

This is the Hamiltonian for spin J in a magnetic field B whose direction is varied 
slowly. A classical analogue of (2) discussed by Gozzi and Thacker (1987) uses 
Grassmannian variables which, however, limits their analysis to the spin-; representa- 
tion. We thought the case of higher spin would also be worth investigating. Here we 
consider such a classical dynamics, which corresponds to the Hamiltonian in (2) for 
spin-1 representation, and calculate the Hannay angle to check whether this is compat- 
ible with the semiclassical formula in (1). 
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The classical Hamiltonian we consider describes the motion of a magnetic moment 
in a time-varying magnetic field. We use ordinary classical variables as opposed to 
those used by G o u i  and Thacker. Some differences from their work are commented 
on at the end. 

We proceed with the elementary computation of the classical phase shift(s) directly 
from the familiar equation of motion (Slichter 1978) 

s k  = E k i m S l  B, . (3) 

This is identical to the Schrodinger equation of a spin-1 particle in the same field 
(Series 1978) 

i hck = Hk/*/ 

where the Hamiltonian -(Jm)k/Bm has a form similar to (2), and is given in terms of 
the angular momentum operators (with respect to some basis) 

( J m  ) k /  = -i f i E k l m ’  (4) 
which constitute the regular representation of angular momentum algebra. Hence we 
can say that (3) is the classical analogue of spin-1 dynamics. The exact expression for 
Berry’s phase being known in this case (Berry 1984), our aim is to verify that, in 
accordance with ( l ) ,  the classical shift equals the magnetic quantum number derivative 
of the quantum phase. 

Let us first rewrite (3) in the matrix form 

s k  = 6k/s/ ( 5 )  

B = ( B : + B : +  E:)? ( 6 )  

u-’8u = i d  (7) 

where 6 is an antisymmetric matrix associated with the ‘Euler vector’ B of magnitude 

The most obvious way to solve ( 5 )  is to look for a matrix U which diagonalises 6, i.e. 

6,, being the diagonal eigenvalue matrix with entries 0, kiB. Let us introduce the ‘new’ 
variables 

g k  = uL,s/ = ui/s/ (8) 
(where t denotes Hermitian conjugation); in terms of these the equations of motion 
become 

(9) 
Note that since the external parameters B vary with time, U depends on time explicitly 
through them and therefore the second term on the right-hand side of (9) is in general 
non-vanishing. However, this term can be ignored instantaneously if the parameters 
vary slow enough and it is natural in the adiabatic approximation to look for a solution 
to (9) of the type 

g k  = i d k / s ’ l  - ( U’ o)k/gl. 

S k  = qk(l) exp(-iek(t))* (10) 
The Hannay angle phenomenon which interests us appears in the angle variables 

e k ( t ) ,  defined by (10). To see this we substitute (10) into (9) and then separate the 
real and imaginary parts, which yields 

d k  = - 1 Re Gkl(PI k, I =  1-3 (1 la )  
k # i  
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and 

Here we have introduced the anti-Hermitian matrix: 

In the spirit of an adiabatic analysis, one would average over one period of the 
fast motion. Following Berry, one can then replace time averages by angle averages 
over the true fast angle variables. As one of the eigenvalues is zero, one variable, say 
e , ,  does not change at all. Therefore, strictly speaking, while considering the angular 
average, the average has to disappear, leaving us with the definition 

Using this averaging procedure, the off-diagonal elements of (2) are found to vanish; 
of interest are surviving diagonal elements. Consequently, this implies from (1 1 a )  that 
the (angle averaged) (Pk are adiabatic invariants, and also that the net change in (angle 
averaged) e k ,  after a round trip in the parameter space during time T, is given by 

The interpretation of both the terms on the right-hand side of (14) is quite clear: 
the first term is the dynamical contribution accumulated during time T, and the second 
term is the Hannay angle: 

(15a-d) 

where (15c) follows from (15b) via Stokes' theorem, and in (15d) we have introduced 
the following notation: 

xy = BI/B 

X'k' denote the three three-component (column) eigenvectors of 6 with eigenvalues 
0, -iB and iB, respectively. A straightforward, though tedious, calculation shows that 



L10 Letter to the Editor 

Here a( c )  is the solid angle subtended by C at the origin of the parameter space. The 
result given by (17) fulfils our expectation from (1). Replacing the derivative by the 
ratio of finite differences, we obtain 

We have used here the exact result due to Berry (1984) that y , (C)  = n a ( C )  for the 
Hamiltonian of (2). 

Similar phase shift expressions were derived by Gozzi and Thacker (1987) for their 
spin-f Grassmannian system. They compute the 'angle 2-form' (Berry 1984) in their 
model whose action derivative yields the classical shifts similar to our (17). Their 
averaging procedure involves averaging over all the three angles, whereas in our case 
it would be wrong to average over e l ,  which remains fixed. The expressions for the 
Lagrangian and Hamiltonian in our spin-1 model which, however, we had no occasion 
to exploit, differ from their spin-; model. For example, in terms of the action-angle 
variables Z,, ek,  k = 1-3, our Hamiltonian is given as B(Z2+Z3). In contrast, in their 
case H = B ( I ,  - Z3). 
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